


CBPF-NF-028/08

SUSY SHAPE-INVARIANT HAMILTONIANS FOR
THE GENERALIZED DIRAC-COULOMB PROBLEM

R. de Lima Rodrigues
Unidade Académica de Educacao, Universidade Federal de Campina Grande
Cuité - PB, 58.175-000 - Brazil
Centro Brasileiro de Pesquisas Fisicas (CBPF)
Rua Dr. Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro, RJ, Brazil
Arvind Narayan Vaidya (In memory)
Instituto de Fisica - Universidade Federal do Rio de Janeiro

Caixa Postal 68528 - CEP 21945-970, Rio de Janeiro, Brazil

Abstract

A spin % relativistic particle described by a general potential in terms of the sum of the
Coulomb potential with a Lorentz scalar potential is investigated via supersymmetry in quan-

tum mechanics.

PACS numbers: 03.65.Fd, 03.65.Ge, 11.30.Pb

Key-words: SUSY Quantum Mechanics; Shape-invariant Hamiltonians; Dirac-Coulomb prob-

lem.

e-mail: rafaelr@cbpf.br or rafael@df.ufcg.edu.br. This work was presented at XIV EVJAS,
section particles and fields, from 21 /january to 02/February (2007), in Campos do Jordao-SP,

Brazil.



CBPF-NF-028/08 1

Supersymmetry in Quantum Mechanics (SUSY QM) [1] is of intrinsic mathematical interest
in its own as it connects otherwise apparently unrelated second-order differential equations.

The (1+3) and (1+1) dimensional Dirac equations with both scalar-like and vector-like po-
tentials are well known in the literature for a long time [2]. The connection between position-
dependent-effective-mass and shape invariant condition under parameter translation has been
discussed in non-relativistic quantum mechanics [3, 4]. Recently, some relativistic shape invari-
ant potentials have been investigated [5].

Exact solutions for the bound states in this mixed potential can be obtained by the method
of separation of variables [6-8] and also by the use of the dynamical algebra SO(2,1) [9]. In
a recent paper the solution of the scattering problem for this potential has been obtained by
an analytic method and also by an algebraic method [10], the problem of a relativistic Dirac
electron with a 1/r scalar potential, as well as a Dirac magnetic monopole and an Aharonov-
Bohm potential has also been investigated [11], and the bound eigenfunctions and spectra of a
Dirac hydrogen atom have been found via su(1, 1) Lie algebra [12].

Recently exact solutions have been found for fermions in the presence of a classical back-
ground which is a mixing of the time-dependent of a gauge potential and a scalar potential
[13]. Also, exactly solvable Eckart scalar and vector potentials in the Dirac equation have been
investigated via SUSY QM [14], the S-wave Dirac equation has been solved exactly for a single
particle with spin and pseudospin symmetry moving in a central Woods-Saxon potential [15].

The special case of the non-relativistic [16] and relativistic Coulomb problems have been
treated recently via SUSY QM [17-19]. In this work, the relativistic Coulomb potential with a
Lorentz scalar potential is investigated via shape invariance conditions of the SUSY QM.

The time independent Dirac equation may be written in the form HU = FE1i,where the

Hamiltonian is given by

S A A
H:P1®U'P+(M—72>P3®12X2—71® Lix4,

and we have used a direct product notation in which p; and oy, (i = 1,2, 3) are the Pauli spin
matrices obeying [p;,0;]- =0, with h = ¢ = 1.

We consider [20]
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where ¢§m = ¢ for j =0+ :. Next, using the relation [1 + & - L,G- 7]+ = 0 we obtain

jm

KV = —kV and the following radial equations

Gy & A, A
df+;ng—(E+M—72+71)ng o,

dF,;  k A, A
Jh_ﬂﬁ(E—M+l+—Q@j:0 (2)
T T T T

Note that the interaction in these two equations can be diagonalized so that we obtain

AtGx F, A Fx@ (3)
where

d XN FA+MA,
A= — 4o/ 2 4
dr + r A (4)
These relations are similar to the relations between the two components of the eigenfunctions

of a "supersymmetric” Hamiltonian which satisfies the following Lie graded algebra

" =1Q,Q=QQ"+Q'Q, [H.Ql-=0=[HQl- ()

with the following representation

0 0 H_=ATA 0 F
- ) H= ) q)SUSY - . (6)
A_ O 0 H+ - A_A+
Note that the supercharges are nilpotent operators, viz., (Qf)? = 0 = Q2.
Thus, using the shape invariant Hamiltonians Hy we obtain the energy eigenvalues associated

to the component E™ given by

M?2 MA
En: 2 n:071727"'7 P)/TL(E>:A1+ E2' (7)

Tn

Lt i

In conclusion, we obtain the complete set of the energy eigenvalues of the Dirac equation for a

potential which is the sum of the Coulomb potential with a Lorentz scalar potential inversely
proportional to r via shape invariance property as applied in [17]. One of us (RLR) will make
elsewhere a detailed analysis for this problem as applied to the relativistic Coulomb potential

via SUSY shape-invariant potentials [17].
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