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Supersymmetry in Quantum Mechanics (SUSY QM) [1] is of intrinsic mathematical interest

in its own as it connects otherwise apparently unrelated second-order differential equations.

The (1+3) and (1+1) dimensional Dirac equations with both scalar-like and vector-like po-

tentials are well known in the literature for a long time [2]. The connection between position-

dependent-effective-mass and shape invariant condition under parameter translation has been

discussed in non-relativistic quantum mechanics [3, 4]. Recently, some relativistic shape invari-

ant potentials have been investigated [5].

Exact solutions for the bound states in this mixed potential can be obtained by the method

of separation of variables [6–8] and also by the use of the dynamical algebra SO(2, 1) [9]. In

a recent paper the solution of the scattering problem for this potential has been obtained by

an analytic method and also by an algebraic method [10], the problem of a relativistic Dirac

electron with a 1/r scalar potential, as well as a Dirac magnetic monopole and an Aharonov-

Bohm potential has also been investigated [11], and the bound eigenfunctions and spectra of a

Dirac hydrogen atom have been found via su(1, 1) Lie algebra [12].

Recently exact solutions have been found for fermions in the presence of a classical back-

ground which is a mixing of the time-dependent of a gauge potential and a scalar potential

[13]. Also, exactly solvable Eckart scalar and vector potentials in the Dirac equation have been

investigated via SUSY QM [14], the S-wave Dirac equation has been solved exactly for a single

particle with spin and pseudospin symmetry moving in a central Woods-Saxon potential [15].

The special case of the non-relativistic [16] and relativistic Coulomb problems have been

treated recently via SUSY QM [17–19]. In this work, the relativistic Coulomb potential with a

Lorentz scalar potential is investigated via shape invariance conditions of the SUSY QM.

The time independent Dirac equation may be written in the form HΨ = Eψ,where the

Hamiltonian is given by

H = ρ1 ⊗ �σ · �p+
(
M − A2

r

)
ρ3 ⊗ 12x2 − A1

r
⊗ 14x4,

and we have used a direct product notation in which ρi and σi, (i = 1, 2, 3) are the Pauli spin

matrices obeying [ρi, σj ]− = 0, with h̄ = c = 1.

We consider [20]

Ψ =

⎛
⎜⎝

iG�j

r
φ�

jm

F�j

r
�σ · �nφ�

jm

⎞
⎟⎠ , (1)
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where φ�
jm = φ

(±)
jm , for j = � ± 1

2
. Next, using the relation [1 + �σ · �L, �σ · �n]+ = 0 we obtain

KΨ = −kΨ and the following radial equations

dG�j

dr
+
k

r
G�j −

(
E +M − A2

r
+
A1

r

)
F�j = 0,

dF�j

dr
− k

r
F�j +

(
E −M +

A2

r
+
A1

r

)
G�j = 0. (2)

Note that the interaction in these two equations can be diagonalized so that we obtain

A+Ĝ ∝ F̂ , A−F̂ ∝ Ĝ (3)

where

A± = ± d

dr
+
λ

r
− EA1 +MA2

λ
. (4)

These relations are similar to the relations between the two components of the eigenfunctions

of a ”supersymmetric” Hamiltonian which satisfies the following Lie graded algebra

H = [Q,Q†]+ = QQ† + Q†Q, [H,Q†]− = 0 = [H,Q]− (5)

with the following representation

Q =

⎛
⎜⎝ 0 0

A− 0

⎞
⎟⎠ , H =

⎛
⎜⎝ H− = A+A− 0

0 H+ = A−A+

⎞
⎟⎠ , ΦSUSY =

⎛
⎜⎝ F

G

⎞
⎟⎠ . (6)

Note that the supercharges are nilpotent operators, viz., (Q†)2 = 0 = Q2.

Thus, using the shape invariant HamiltoniansH± we obtain the energy eigenvalues associated

to the component F̂ n given by

En =

√√√√√ M2

1 + γ2
n

(
√

k2−γ2
n+n)2

n = 0, 1, 2, · · · , γn(E) = A1 +
MA2

En
. (7)

In conclusion, we obtain the complete set of the energy eigenvalues of the Dirac equation for a

potential which is the sum of the Coulomb potential with a Lorentz scalar potential inversely

proportional to r via shape invariance property as applied in [17]. One of us (RLR) will make

elsewhere a detailed analysis for this problem as applied to the relativistic Coulomb potential

via SUSY shape-invariant potentials [17].
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