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Abstract

We give a proof for the existence of weak solutions on the initial-value problem
of a non-linear wave damped propagation.

1 Introduction

One of the most important problems in the mathematical physics of the non-linear dif-
fusion and wave-damped propagation is to establish the existence and the uniqueness
of weak solutions in some convenient Banach spaces for the associated nonlinear evolu-
tion equation (see Refs 1–5). Another important class is these coming from initial-value
problems for non-linear diffusion or damped hyperbolic partial differential equations with
random initial conditions associated to the Gaussian processes sampled in certain Hilbert
Spaces ([2]) and simulating the statistical turbulence physical phenomena ([6]).

The purpose of this short note is to contribute to such mathematical physics studies by
using functional spaces compacity argument in order to produce proofs for the existence
of weak solutions for a class of non-linear wave damped propagation on a smooth domain
with Dirichlet boundary conditions and initial values belonging to the space L2(Ω).

2 Existence Solution for Hyperbolic Non-linear

Damping

Let us introduce firstly a non-linearity associated to a real valued function F (x) on R
such that F ′(x) is strictly positive and an external forcing source f(x, t) supposed to be
on the space L∞([0, T ], L2(Ω)).

Associated to them we consider the following non-linear damped Hyperbolic initial
value problem on Ω× [0, T ] with imposed Dirichlet boundary conditions and a damping
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positive constant ν.

∂2U(x, t)

∂t2
+ (AU)(x, t) = −ν

∂U(x, t)

∂t
+ ∆

(
F

(
∂U

∂t
(x, t)

))
+ f(x, t) (1)

The L2(Ω)-initial conditions are given by

U(x, 0) = g(x) ∈ L2(Ω) (2-a)

Ut(x, 0) = h(x) ∈ L2(Ω) (2-b)

U(x, t)|∂Ω = 0 (2-c)

and now the non-homogenous term f(x, t) is considered to be a function belonging to the
functional space

L2([0, T ]× Ω) ∩ L∞([0, T ], L2(Ω)). (3)

We have thus the following theorem of existence (without uniqueness)

Theorem 2. There exists a solution U(x, t) on L∞([0, T ] × L2)Ω)) for eq.(1)–eq.(3) in
the weak sense with a test functional space as given by C∞

0 ([0, T ], H2(Ω) ∩H1
0 (Ω)).

In order to arrive at such theorem, let us consider the a priori estimate for eq.(1) with
U̇ (n) ≡ ∂

∂t
(U (n)(x, t)). Namely:

1

2

d

dt
||U̇ (n)||2L2(Ω) + ν||U̇ (n)||2L2(Ω)

+ (AU̇ (n), U (n))L2(Ω) + ||(F ′(U̇ (n)))1/2∇U̇ (n)||2L2(Ω)

= (f, U̇ (n))L2(Ω) (4)

or equivalently

1

2

d

dt

{
||U̇ (n)||2L2(Ω) + (AU (n), U (n))L2(Ω)

}
+ ν

{
||U̇ (n)||2L2(Ω) + (AU (n), U (n))L2(Ω)

}
+ ||(F ′(U̇ (n)))1/2∇U̇ (n)||2L2(Ω) ≤ ν(AU (n), U (n))

+
1

2

(
p||f ||2L2(Ω) +

1

p
||U̇ (n)||2L2(Ω)

)
(5)

If one chooses here the integer p such that 1
2p

= ν, we have the simple bound

1

2

d

dt
{||U̇ (n)||2L2(Ω) + (AU (n), U (n))L2(Ω)} ≤

1

4ν
||f ||2L2(Ω). (6)

As a consequence of eq.(6), there is a constant M such that the uniform bounds holds
true (even if for the case T = +∞ for the case of f ∈ L2([0,∞), L2(Ω))).

sup ess0≤t≤T ||U̇ (n)||2L2(Ω) ≤ M (7)
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sup ess0≤t≤T ||U (n)||2L2(Ω) ≤ M. (8)

As a consequence of the bounds eq.(7) – eq.(8), there are two functions U(x, t) and
P (x, t) such that we have the weak star convergence on L∞([0, T ]× L2(Ω))

weak-star lim
n→∞

(U (n)(x, t)) = U(x, t) (9)

weak-star lim
n→∞

(
∂

∂t
U (n)(x, t)) = P (x, t). (10)

We have thus that the relationship below hold true for any test function v(x, t) ∈
C∞

c ([0, T ]×H2(Ω)∩H1
0 (Ω)) obviously satisfying the relations v(x, 0) = v(x, T ) = ∆v(x, 0) =

∆v(x, T ) = vt(x, 0) = vt(x, T ) = vtt(x, 0) = vtt(x, T ) ≡ 0 as a consequence of applying
the Aubin-Lion theorem∫ T

0

dt
[ (

U,
d2v

d2t

)
L2(Ω)

+ (U, Av)L2(Ω)

+ ν

(
U,−dv

dt

)
L2(Ω)

− (F (P ), ∆v)L2(Ω)

]
=

∫ T

0

dt(f, v)L2(Ω) (11)

with the initial conditions
U(x, 0) = g(x) ∈ L2(Ω) (12)

P (x, 0) = h(x) ∈ L2(Ω). (13)

Let us show now that

U(x, t) =

∫ t

0

dsP (x, s). (14)

Firstly, let us remark that integrating on the interval 0 ≤ t ≤ T the relationship eq.(4),
one obtains the following estimate

1

2

(
||U̇n(t)||2L2(Ω) − ||U̇n(0)||2L2(Ω)

)
+

(
ν

∫ t

0

ds||U̇n||2L2(Ω)(s)

)
+

1

2
(AU (n)(t), U (n)(t))L2(Ω)

− 1

2
(AU (n)(0), U (n)(0)) +

∫ t

0

ds||(F ′(U̇ (n)))1/2∇U̇ (n)||2L2(Ω)

≤ p′

2

∫ t

0

ds||f ||2L2(Ω) +
1

2p′

∫ t

0

||U̇n(s)||2ds (15)

Since the operator A satisfies the Gärding-Poincaré inequality on L2(Ω)

(AU (n), U (n))L2(Ω)(t) ≥ γ(Ω)||U (n)||2L2(Ω)(t), (16)
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one can see straightforwardly from eq.(15) by choosing 2p′ > 1
ν

and the previous bounds
eq.(7) that there is a positive constant B such that∫ T

0

ds||U̇ (n)(s)||2L2(Ω) ≤ B = MT (17)

which by its turn yields that dUn(t,x)
dt

is weakly convergent to P (x, t) in L2([0, T ], L2(Ω)).
As a consequence of general theorems of Function convergence on space of integrable

functions (Aubin-Lion theorem again ([1])), one has that P (x, t) is the time-derivative of
the function U(x, t) almost everywhere on Ω, since it is expected that U (n)(x, t) should
be a strongly convergent sequence to U(x, t) on the separable and reflexive Banach Space
L∞([0, T ]× L2(Ω)) ([1]). (See Appendix A for mathematical details).
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APPENDIX A

Le us show that the functions U(x, t) ∈ L∞([0, T ], L2(Ω)) given by eq.(8) and P (x, t) ∈
L∞([0, T ], L2(Ω)) – eq.(9) are coincident as elements of the above written functional space
of L2(Ω) – valued essential bounded functions on (0, T ).

To verify such result, let us call the reader attention that since Um(x, t) is wearly
convergent to U(x, t) in L∞([0, T ], L2(Ω)), we have that the set {Um(x, t)} is convergent
to the function U(x, t) as a Schwartz distribution on L2(Ω) since D([0, T ], L2(Ω)) ⊂
L1([0, T ], L2(Ω)).

This means that

Um(x, t) → U(x, t) in D′([0, T ], L2(Ω)). (1-A)

Analogous result hold true for the time-derivative of the above written equation as a
result of U(x, t) be a function

∂

∂t
Um(x, t) → ∂

∂t
U(x, t) in D′([0, T ], L2(Ω)) (2-A)

By the other side, the set
{

∂Um(x,t)
∂t

}
converges wearly star in L1([0, T ], L2(Ω)) to

P (x, t) ∈ L∞([0, T ], L2(Ω)) which, by its turn, means that

∂Um(x, t)

∂t
→ P (x, t) in D′([0, T ], L2(Ω)). (3-A)

By the uniqueness of the limit on the distributional space D′([0, T ], L2(Ω)), we have

the coincidence of ∂U(x,t)
∂t

and P (x, t) as elements of D′([0, T ], L2(Ω)). However, P (x, t) is

a function, so by general theorems on Schwartz distribution theory
{

∂U(x,t)
∂t

}
must be a

function either since L2(Ω) is a separable Hilbert Sapce. As a consequence we have that
∂U(x,t)

∂t
= P (x, t) as elements of L∞([0, T ], L2(Ω)), which is the result searched

∂U(x, t)

∂t
= P (x, t) a.e. in ([0, T ]× Ω. (4-C)



CBPF-NF-031/08 6

References:

[1] J. Wloka, “Partial differential equations”, Cambridge University Press, (1987).

[2] Y. Yamasaki – “Measures on Infinite Dimensional Spaces”, Series in Pure Mathe-
matics World Scientific - vol. 5, (1985).

– B. Simon, Functional Integration and Quantum Physics, Academic Press, (1979).

– J. Glimn and A. Jaffe, “Quantum Physics – a functional Integral point of wiew”
– Springer Verlag, (1981).

– Xia Dao Xing – “Measure and Integration Theory on Infinite Dimensional Space”,
Academic Press, (1972).

– L. Schwartz, “Random Measures on Arbitrary Topological Space and Cylindrical
Measures - Tata Institute - Oxford University Press, (1973).

– Ya G. Sinai, “The theory of phase transitions: rigorous results, London, Pergamon
Press, (1981).

[3] O. A. Ladyzenskaja, V.A. Solonninkov and N.N. Ural’ceva - “Linear and Quasilinear
Equations of Parabolic Type”, Amer. Math. Soc. Transl., A.M.S., Providence, R.I.,
(1968).

[4] S.G. Mikhlin – “Mathematical Physics, an advanced course”, Series in Applied
Mathematics and Mechanics, North-Holland, (1970).

[5] Luiz C.L. Botelho – Journal of Physics A: Math. Gen., 34, L 131–L 137, (2001);
Modern Phys. Lett. 16B, No. 21, 793–8-6, (2002).

– A. Bensoussan and R. Teman, Journal of Functional Analysis 13, 195–222, (1973).

– Avner Friedman – “Variational Principles and Free-Boundary Problems” – Pure
& Applied Mathematics, John-Wiley & Sony, N.Y., (1982).

[6] Luiz C.L. Botelho – Il Nuovo Cimento, vol 117B, No. 1, 15, (2002); J. Math. Phys.,
42, 1682, (2001).

– Monin A.S. and Yaglon A.M. – “Statistical Fluid Mechanics” – Mit Press, Cam-
bridge, vol. 2, 1971.

– G. Rosen – Journ. Math. Phys., 12, 812, (1971).

– Luiz C.L. Botelho, Mod. Phys. Lett 13B, 317, (1999).

– A.A. Migdal, Int. Journal of Modern Physics A9, 1197, (1994).

– V. Gurarie and A. Migdal, Phys. Rev. E54, 4908, (1996).

– U. Frisch, “Turbulence” – Cambridge Press, Cambridge, (1996).

– W. D. Mc-Comb – “The Physics of Fluid Turbulence, Oxford University, Oxford,
(1990).

– Luiz C.L. Botelho, Mod. Phys. Lett B13, 363, (1999).



CBPF-NF-031/08 7

– Luiz C.L. Botelho, Nuov. Cimento 118B, 383, (2004)

– Denisov SI, Horsthemke W., Phys. Lett A282 (6), 367, (2001).

– Luiz C.L. Botelho, Int. J. Mod. Phys. B13, 1663, (1999).

– Luiz C.L. Botelho, Mod. Phys. Lett B12, 301, (1998).

– Cresson J.C.; Lyra M.L., J. Phys. Condens. Mat 8 (7), L83, (1996).

– Luiz C.L. Botelho – Mod. Phys. Lett B12, 569, (1998).

– Luiz C.L. Botelho – Mod. Phys. Lett B12, 1191, (1998).

– Luiz C.L. Botelho – Mod. Phys. Lett B13, 203, (1999).

– Luiz C.L. Botelho – Int. J. Mod. Phys. B12, 2857, (1998).

– Luiz C.L. Botelho – Phys. Rev. 58E, 1141, (1998).

[7] Michal Reed and Barry Simon, “Methods of Modern Mathematical Physics”, vol II,
Academic Press, (1980), New York.


