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Abstract

We discuss the quantization of a class of relativistic fluid models defined in terms
of one real and two complex conjugate potentials with values on a Kähler manifold,
and parametrized by the Kähler potential K(z, z) and a real number λ. In the hamil-
tonian formulation, the canonical conjugate momenta of the potentials are subjected
to second class constraints which allow us to apply the symplectic projector method
in order to find the physical degrees of freedom and the physical hamiltonian. We
construct the quantum theory for that class of models by employing the canonical
quantization methods. We also show that a semiclassical theory in which the Kähler
and the complex potential are not quantized has a highly degenerate vacuum. Also,
we define and compute the quantum topological number (quantum linking number)
operator which has non-vanishing contributions from the Kähler and complex po-
tentials only. Finally, we show that the vacuum and the states formed by tensoring
the number operators eigenstates have zero linking number and show that linear
combinations of the tensored number operators eigenstates which have the form of
entangled states have non-zero linking number.
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1 Introduction

The recent interest in the lagrangian and hamiltonian formulation of the relativistic
fluid mechanics with non-zero vorticity has been motivated by a large range of ap-
plications such as: the neutron star dynamics [1], the representation of the massless
axion field in cosmology [2], the Kalb-Ramond and global string induced superfluid
vorticity [3, 4], and the relationship between the superstrings, supermembranes and
the superfluid dynamics [5, 6, 7, 8].

The analysis of the vorticity in the lagrangian formalism requires a particular
parametrization of the fluid potentials. In the case of the non-relativistic fluid, this
is achieved by the Clebsch parametrization of the velocity potential v = ∇θ + α∇β,
where α, β (the Gauss potentials) and θ are scalar fields [9]. In the hamiltonian
formulation, the Clebsch parametrization allows to express the kinematic helicity
as a surface integral and to realize canonically the non-vanishing brackets between
the variables ρ (matter density field) and v [10]. In [6], it was proposed a different
parametrization of the fluid potentials in which the vortex dynamics is expressed in
terms of grassmannian coordinates and the vortex is associated to the spin. That
parametrization has been used for the generalization of the Chaplygin gas model in
d = 2 + 1 and d = 3 + 1 [11](see for an introduction and reviews [12, 13].)

Another very interesting proposal for a parametrization of the fluid potentials
was put forward in [14], where the potentials are complex coordinates on an arbitrary
Kähler manifold. That approach allows to construct interesting models of supersym-
metric fluids which, on their turn, shade some light on the problem of the superfluid
phases of certain supersymmetric systems [15, 16, 17]. The parametrization of the
potentials in terms of complex coordinates preserves the property of the Clebsch
parametrization, namely to elliminate the obstruction to building a consistent la-
grangian which could exist due to a Chern-Simons term that is necessary in order to
consider the non-zero vorticity [12]. The complex parametrization can be introduced
instead of the Clebsch parametrization already at the non-supersymmetric level and
the full structure of the divergence free currents and the topological charges associ-
ated to non-zero vorticity can be obtained in this way [14]. An important feature of
the complex parametrization is that the hamiltonian dynamics is governed by a set
of simple second-class constraints among the fluid degrees of freedom. In this paper,
we propose a quantized theory for a large set of non-supersymmetric relativistic fluid
models on Kähler manifolds.

The fluid properties of the system under consideration are described by a set of
fields that represent the fluid potentials and which, together with their canonically
conjugate momenta, can be organized to form a canonical phase space. The poten-
tials and their momenta are subjected to second class constraints which form a set
of simple algebraic equations. As a first result, we will obtain the physical degrees of
freedom of the largest set of classical fluid models by applying the symplectic pro-
jector method developped in [18, 19, 20] and more recently employed in the study
of the extended abelian Chern-Simons theory [21], the noncommutative open string
[22], the Maxwell-Chern-Simons theory [23], the Lorentz-symmetry violation [24],
quantum gravity potentials [25] and cosmological perturbations [26] (see for reviews
[27, 28].) Althought equivalent to other methods used to solve the second class con-
straints, the symplectic projector method has the advantage of giving a geometrical
picture to the relationship between the set of fields and their canonical conjugate



momenta on one hand and the set of physical degrees of freedom defined by local co-
ordinates on the constraint surface on the other hand. Compared with the literature,
our results reproduce exactly the general classical hamiltonian from [14]. Moreover,
there are some new results consisting in the explicit identification of the physical
degrees of freedom and of their relationship with the linearly dependent fields. The
main result of this paper is the quantization of a smaller class of models parametrized
by the Kähler potential K(z, z) and a real parameter λ. That corresponds to choosing
the arbitrary potential function on the fluid density f(ρ) of the form f(ρ) = λρ2/2
by which a set of quantizable fluid models is selected. The larger class of classical
models is parametrized by K(z, z) and the general potential functions f(ρ) and, in
general, it is not suitable for quantization due to the arbitrary form each of these
two functions can take. Our approach to the quantum fluid is based on the canonical
quantization performed in the physical phase space of the relativistic fluid. However,
since the Kähler and the complex potentials determine a d = 3 vector field A(z, z)
associated to the conserved currents, we quantize the field A rather than the com-
plex fields z and z. Due to the large arbitrariness in choosing the Kähler potential
K(z, z), there is no simple relationship between the quantized fields A and z and
z. That suggest that one could also consider a semiclassical situation in which the
potential A is kept classical and just the canonical pair θ and πθ is quantized. How-
ever, it turns out that in this case the Fock space is highly degenerate having all
one-particle states proportional to the vacuum. Therefore, the quantization of the
complex potentials is imposed, and quantizing the field A represents the simplest
approach to this problem. The last new result of this paper is the calculation of the
quantum topological charge (or quantum linking number) operator ω̂. This is con-
structed from the normal ordered expression of the classical topological charge. The
normal ordering is necessary because there are terms in ω̂ which have the general
form δ3 (0) kn, where k is any component of the momentum and n = 1, 2, 3. These
terms are undetermined in the low momentum limit and vanish otherwise. We discuss
the structure of the Fock space with respect to ω̂ and show that the vacuum and the
number operator eigenstates have zero linking number while the linear combination
of tensored number operators eigenstates have non-zero topological charge 1.

The paper is organized as follows. In Section 2 we briefly review the general
relativistic fluid on Khäler manifolds in the hamiltonian formulation from [14]. Also,
we determine the physical degrees of freedom which are the local coordinates on
the constraint manifold by the symplectic projector method and write down the
expression of the physical hamiltonian and the conserved charges in term of these.
The physical hamiltonian obtained by applying the symplectic method coincides with
the one given in the literature. In Section 3 we quantize the particular class of models
parametrized by K(z, z) and λ. We give the structure of the Fock space and show
that if the vector potential A is considered as a classical field, the Fock space of
the semiclassical quantized fluid is highly degenerate. In Section 4 we discuss the
quantum topological operator and determine the general form of the states from the
Fock space which have non-vanishing linking number. The last section is devoted to
conclussions.

1The quantum fluid states with non-zero linking number are actually entangled number operators
eigenstates.



2 Relativistic Fluid in the Hamiltonian Formu-

lation

In this section we are going to review the non-supersymmetric perfect relativistic
fluid studied in [14]. Also, we are going to derive the physical degrees of freedom
in a new way by applying the symplectic projector method developped in [27, 28].
That is equivalent, of course, to solving the constraint equations in a purely algebraic
way as was done in [14]. However, the symplectic projector method provides a simple
geometrical picture for the relationship among potentials, physical degrees of freedom
and constraint surface.

In the class of models under consideration, the relativistic fluid is characterized
by the equations of state for the local physical quantities p, ε, and ρ which are the
pressure, the energy density and the local fluid density, respectively. The dynamics
conserves the energy-momentum tensor Tµν and the fluid density current jµ

∂µTµν = 0, ∂µj
µ = 0, (1)

where
Tµν = pηµν + (ε+ p)uµuν , jµ = ρuµ. (2)

Here, ηµν = (−,+,+,+) is the Minkowski metric, uµ = dxµ/dτ is the velocity four-
vector with u2

µ = −1 and τ is the proper time along the flow line of the current.
From the current conservation given in the equations (1), one can see that there are
three independent current components to which one can assign three fluid potentials
(θ, z, z̄) that play the role of the Lagrange multipliers in the lagrangian formulation
of the theory. As was argued in [14], one can take θ real, z complex and z̄ the complex
conjugate of z. One can choose the complex potentials to parametrize an arbitrary
Kähler manifold characterized by the Kähler potentialK(z, z̄) which is a real function
on z and z̄. The above conservation equations can be obtained from the following
lagrangian density [14]

L[jµ, θ, z̄, z] = −jµ
(
∂µθ + i∂K∂µz − i∂K∂µz

)
− f(ρ), (3)

where ∂K = ∂zK, ∂K = ∂zK and f(ρ) is some potential function on ρ. Also, one
can see from the definition of the fluid density current that ρ =

√
−j2. The action is

invariant under the spacetime translations and the potential fields reparametriza-
tions. The corresponding conservation laws are: the conservation of the energy-
momentum tensor and the conservation of the fluid density current as given in
the equations (1), and the conservation of an infinity of reparametrization currents
Jµ[G] = −2G(z̄, z)jµ, where G(z̄, z) are arbitrary analytic functions on z and z. Be-
side the reparametrization currents given above, there are conserved axial currents
generated by conserved topolgical charges defined by the following relation [14]

ω = −2i

∫
d3x ∂i

[
εijkθ∂∂K∂j z̄ ∂kz

]
. (4)

The charges ω can be interpreted as the linking number of vertices formed in the
fluid.



The fluid flow and the non-zero vorticity can be described in the hamiltonian
formalism, too. Following [14], we define the canonically conjugate momenta as follows

πµ =
∂L

∂uµ

∣∣∣∣
ρ

= ρ
(
∂µθ + i∂K∂µz − i∂K∂µz̄

)
, πθ =

∂L

∂∂0θ
= j0, (5)

πz =
∂L

∂∂0z
= i∂Kj0, πz =

∂L

∂∂0z
= −i∂Kj0. (6)

Note that the currents jµ do not appear dynamically in the theory and that the axial
current depends locally on πµ. Therefore, the relevant phase space for the physical
degrees of freedom is the reduced phase space (θ, z, z̄, πθ, πz, πz). The equations (6)
represent a set of two second class constraints in the reduced phase space

Ω1 = πz − i∂Kπθ = 0, Ω2 = πz̄ + i∂Kπθ = 0. (7)

The physical degrees of freedom of the relativistic fluid can be obtained from
the reduced phase space potentials by applying the symplectic projector method by
which the reduced phase space is projected on to the constraint surface defined by
the relations (7) [20, 27, 28]. Let us introduce the following notation for the potentials
and their momenta

{ξi} = {ξ1,ξ2,ξ3,ξ4,ξ5,ξ6} = {θ, z, z̄, πθ, πz, πz} . (8)

The local coordinates on the constraint surface {ξ∗i } are obtained by applying the
symplectic projector Λ to the reduced phase space fields {ξi}

ξ∗i (x
0,x) =

∫
d3y

6∑

j=1

Λj
i (x

0,x,y)ξj(x
0,y), (9)

where the general form of the symplectic projector is given by the following relation

Λi
j(x

0,x,y) = δi
jδ

3 (x − y)−J ik

∫
d3zd3w

δΩα(x0, z)

δξk(x0,x)
D−1

αβ (x0, z,w)
δΩβ(x0,w)

δξj(x0,y)
. (10)

Here J ik = −Jki is the symplectic matrix of the reduced phase space and D−1
αβ ,

α, β = 1, 2, is the inverse of the Dirac matrix of the constraint brackets computed
at equal times. It is a simple exercise to show that the symplectic projector has the
following expression

Λ(x0,x,y) =




1 0 0 0 ∂K

2∂∂Kξ4

∂K

2∂∂Kξ4

0 1
2 0 − ∂K

2∂∂Kξ4
0 i

2∂∂Kξ4

0 0 1
2 − ∂K

2∂∂Kξ4
− i

2∂∂Kξ4
0

0 0 0 1 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

2




δ3(x− y). (11)

From the above relation, one concludes that the number of local coordinates {ξ∗i }
on the constraint surface is equal to the number of unprojected fields {ξi}. However,
since now the system is on the constraint surface, one can use the constraints {Ωα}
to express the coordinates ξ∗5 and ξ∗6 as functions of ξ∗4 . This lefts us with the correct



number of physical degrees of freedom, that is six real degrees of freedom ξ∗’s which
have been obtained from the ten real fields ξ’s acted upon by two complex constraint
equations Ωα. The physical hamiltonian density is given in terms of the linearly
independent fields from {ξ∗i }

H∗ = j·
(
∇ξ∗1 + i∂K∇ξ∗2 − i∂K∇ξ∗3

)
+ f

(√
(ξ∗4)

2 − j2
)
. (12)

By using the field redefinition (8) one can easily see that the expression (12) is exactly
the hamiltonian obtained in [14] by a different method. Also note that the currents
Jµ[G] generate now the reparametrization symmetry of the physical subspace.

3 Quantization of the Relativistic Fluid

The theory presented in the previous section describes a large class of relativis-
tic fluid models parametrized by the Kähler potential K(z, z) and the function

f

(√
(ξ∗4)2 − j2

)
, respectively. Both of these functions can have a quite general form

which makes addressing the issue of quantization difficult, if not impossible, in the
general case. A less general but still interesting class of relativistic fluid models can
be obtained by choosing a simple form for f(ρ) while leaving the Kähler manifold
arbitrary. The equations of state of the reduced set of models have the following form
[14]

p = ε =
λ

2
ρ2 , f(ρ) =

λ

2
ρ2. (13)

These models are parametrized by the Kähler potential K(z, z) and the real number
λ. From the equations of motion for jl, l = 1, 2, 3, one can determine the explicit
form of these currents in terms of the reduced phase space fields as follows

∂H∗

∂jl
= 0 =⇒ jl =

1

λ

(
∂lξ

∗
1 +

i

2
∂K∂lξ

∗
2 −

i

2
∂K∂lξ

∗
3

)
. (14)

By applying the symplectic projector formalism employed in the previous section and
by using the equations (14), the following physical hamiltonian is obtained

H∗ =
1

2λ

(
∇ξ∗1 +

i

2
∂K∇ξ∗2 −

i

2
∂K∇ξ∗3

)2

+
λ

2
(ξ∗4)

2. (15)

Note that H∗ is identical to the hamiltonian calculated in [14] for the models
parametrized by {K(z, z), λ}.

The quantization of the relativistic fluid described by the hamiltonian (15) can
be performed in the canonical approach. Let us return to the original field notations
{θ, πθ, z, z} where the fields are from the physical phase subspace. The canonical
conjugate variables are θ and πθ, while z and z do not propagate. Let us introduce
the following real vector potential field

A(K, z, z) ≡ A(x) =
i

2
∂K∇z −

i

2
∂K∇z. (16)

From the Hamilton equations, we obtain the following equation of motion for the θ
potential (

∂0∂0 + ∇
2
)
θ(x0,x) = −∇ · A(x0,x). (17)



This equation shows that the physical phase subspace of the relativistic fluid is equiv-
alent to that of a massless scalar field θ moving inside the potential created by K(z, z)
and the fluid potentials z and z. Actually, by assuming that

∣∣θ(x0,x)A(x0,x)
∣∣ → 0

as
∣∣x0
∣∣→ ∞, one can write the hamiltonian (15) as

H∗ =

∫
dx0dx

[
λ

2
π2

θ +
1

2λ
(∇θ)2 + V (θ,A)

]
, (18)

where

V (θ,A) = −
1

λ

[
θ∇ ·A−

1

2
(A)2

]
. (19)

For ∇ ·A 6= 0, the function V has a zero for each field configuration that satisfies

θ0 =
1

2

(A)2

∇ · A
. (20)

At the points from the physical phase subspace where the equations (20) is satisfied,
the relativistic fluid is described by the scalar potential θ only, and it is equivalent
to a free massless scalar field. Actually, the vanishing of the gradient of the vector
potential signals an extremum of V . The extrema of V in the θ direction and in the
A directions, respectively, are given in terms of physical degrees of freedom by the
following equations

∂j

(
∂K∂jz − ∂K∂jz

)
= 0, i

(
∂K∂jz − ∂K∂jz

)
= 2∂jθ. (21)

The potential V takes at these points the following values

V1 =
1

2λ
(A)2 , V2 = −

1

2λ

(
θ∂j∂

jθ − ∂jθ∂
jθ
)
. (22)

If the extremum value is obtained in all directions of physical phase subspace simul-
taneously, then by equating V1 and V2 we obtain the following relationship among
the fluid potentials

(∂K)2 ∇z · ∇z+
(
∂K
)2

∇z · ∇z− 2∂K∂K∇z · ∇z+ 2θ (∇)2 θ− 2∇θ · ∇θ = 0. (23)

The above equation describes the fluid configurations for which the contribution to
the fluid energy from the Kähler and the complex fluid potentials and from their
interaction with the scalar fluid potential is extreme.

For the classical models described above, the reparametrization charges Q[G] have
a simple form in terms of physical phase space coordinates

Q[G(ξ∗)] =

∫
d3xG(z, z)πθ. (24)

Therefore, it is easy to show that the charges Q[G] are conserved provided that the
following relation holds ∫

Σ
ds · (∇θ + A) = 0, (25)

where ds is the area element of Σ which is a spacelike surface at the spatial infinity.
Since the theory is formulated in the hamiltonian formalism, it is possible to

study the quantum fluctuation of the relativistic fluid in the canonical quantization.



To this end, we interpret θ and A as field operators with the dynamics given by
the equation (17) and replace the Poisson brackets on the constraint surface by the
corresponding commutators. In what follows we are going to use the symbol ̂ to
denote the operators. Then the equation of motion of the quantum field θ̂ is

(
∂0∂0 + ∇

2
)
θ̂(x0,x) = −∇ · Â(x0,x). (26)

The operators θ̂ and Â can be decomposed in terms of plane waves in the usual
fashion

θ̂(x0,x) =

∫
d3kN θ

ke
ik·xâk(x0), (27)

Â(x0,x) =

∫
d3kNA

k e
ik·xb̂k(x0). (28)

Since the equation of motion of θ̂ in the absence of the vector potential Â is the same
as for a free massless scalar field, we consider that θ̂ is massless. Also, since Â is
constructed from non-propagating fields 2, we consider the simplest situation where
A is a massless field, too. Then it is possible to set the normalization constants N θ

k
=

NA

k
= Nk. By plugging the relations (27) and (28) into (26), we obtain the following

set of equations for the operators âk(x0) and b̂k(x0) =
{
b̂nk(x0)

}
, n = 1, 2, 3,

(
∂2

0 + k2
)
âk(x0) = ik · b̂k(x0), (29)

for all k. The general solution of the equation (29) can be written as

âk(x0) = â
(1)
k

(x0)e−
iω

k

c
x0

+ â
(2)
k

(x0)e
iω

k

c
x0

, (30)

b̂k(x0) = b̂
(1)
k

(x0)e−
iω

k

c
x0

+ b̂
(2)
k

(x0)e
iω

k

c
x0

. (31)

Since the classical fluid potential are real functions, i. e. θ = θ and A = A, it
follows that the corresponding quantum fields are hermitian. Therefore, the following
relations hold (

â
(1)
k

)†
= â

(2)
−k
,
(
b̂

(1)
k

)†
= b̂

(2)
−k
. (32)

By using the hermiticity condition (32), one can write the final form of the plane
wave expanssion for the physical field operators

θ̂(x0,x) =

∫
d3kNk

[
âke

i(k·x−ωk

c
x0) + â†

k
e−i(k·x−ωk

c
x0)
]
, (33)

π̂θ(x
0,x) = −

i

λc

∫
d3kNk

[
âke

i(k·x−ωk

c
x0) − â†

k
e−i(k·x−ωk

c
x0)
]
, (34)

Ân(x0,x) =

∫
d3kNk

[
b̂nke

i(k·x−ωk

c
x0) + b̂†nk

e−i(k·x−ωk

c
x0)
]
, (35)

where Ânk is the n-th component of Â. The normalization constant Nk can be
determined by postulating the canonical equal-time commutators

[
θ̂(x0,x), π̂θ(x

0,x′)
]

= i~δ3(x − x′), (36)

2The field A(K, z, z) has rather a geometric character since it constains the information about the
Kähler space parametrized by the complex potentials z and z.



and by defining the usual commutators among the creation and annihilation operators
[
âk, â

†
k′

]
= δ3(k − k′),

[
b̂nk, b̂

†
mk′

]
= δnmδ

3(k − k′) (37)
[
âk, b̂nk′

]
= [âk, âk′ ] =

[
b̂nk, b̂mk′

]
= 0. (38)

By using the relations (36), (37) and (38), one can show that the normalization
constant has the following form

Nk =

[
λ~c

2ωk (2π)3

] 1

2

. (39)

The Fock space states can be constructed from the vacuum state that is annihi-
lated to zero by all annihilation operators in the known way

âk |0〉 = b̂nk |0〉 = 0, n = 1, 2, 3, (40)

for all k. Since the classical fluid is invariant under spacetime translations, it is natural
to impose the invariance of the vacuum under translations

p̂µ |0〉 = pµ |0〉 . (41)

The physical states are obtained by acting with the creation operators on the vacuum
state. For example, the one-particle excitations of the quantum fluid potentials are
described by the following states

|k〉θ = â†
k
|0〉 , |kn〉A = b̂†nk

|0〉 , n = 1, 2, 3. (42)

In this way, the canonical quantization can be carried out straightforwardly to
the relativistic fluid models described by the hamiltonian (15). However, there are
some differences from the general field quantization due to the quantum equation of
motion (26) that should be satisfied operatorially on all quantum states, and to some

arbitrariety in defining the quantum structure of the vector potential Â. Indeed, the
equation (26) takes the following form in terms of creation and annihilation operators

(
−
ω2

k

c2
+ k2

)(
âk + â†−k

)
|ψ〉 = ik ·

(
b̂k + b̂

†
k

)
|ψ〉 . (43)

Note that for k = 0 either ω0 = 0 or
(
â0 + â†

0

)
|ψ〉 = 0. If |ψ〉 = |0〉 then (43) is

equivalent to the following relation

(
−
ω2

k

c2
+ k2

)
|k〉θ = i

3∑

n=1

kn |kn〉A . (44)

That shows that for k 6= 0 a different normalization of b̂†nk
|0〉 can be considered

b̂†nk
|0〉 = −ikn

(
|k|2 c2−ω2

k

|k|2 c2

)
|k〉

A
, (45)

where |k〉
A

=
∑3

n=1 en |kn〉A and {en}, n = 1, 2, 3 are orthogonal unit vectors on
the spacelike surface. The equations (44) with the normalization (45) is identically
satisfied by the dispersion relation of the massless scalar field ω2

k
= |k|2 c2.



In the above quantization, the unpropagating complex fluid potentials z and z
and the Kähler potential field K(z, z) were not quantized directly, but rather under
the form of the vector potential A. Therefore, in principle one could also consider
the possibility of the semiclassical quantized fluid in which the field A is a classical
vector potential and the dynamical canonical pair (θ, πθ) is quantized. However, by
repeating the steps performed above in the canonical quantization formalism, but now
with Â = A1̂, where 1̂ is the identity operator, we arrive at the following relation
among the one-particle excitations and the vacuum state

|k〉θ = i

(
k2 −

ω2

c2

)
k · bk |0〉θ . (46)

That shows that if the Fourier coefficients bnk are classical functions on z and z, then
the Fock space is highly degenerate with all one-particle states proportional to the
vacuum. Thus, we conclude that if the relativistic fluid model of the type discussed
here is to be treated as a quantum system, the vector potential A should be quantized
as before in order to avoid the infinite vacuum degeneracy.

4 Quantum Topological Charge

In this section we are going to construct the quantum topological charge (quantum
linking number) operator which is the quantum counterpart of the classical linking
number, and to discuss the properties of the Fock space states with respect to it.

The starting point is the classical topological linking number ω defined in the
relation (4). After some algebraic manipulations, it can be put in the following form

ω =

∫
d3xεlmn (∂lθ∂m∂nθ + 2∂lθ∂mAn + 2Al∂m∂nθ + 4Al∂mAn) . (47)

Note that the first and the third terms from the above relation vanish due to presence
of the totally antisymmetric tensor in the integrand, while the second term vanishes
up to a total derivative. Let us define the quantum topological charge operator ω̂ by
interpreting the fields in (47) as quantum operators and taking the normal ordering
of the creation and annihilation operators in the mode expansion of the quantum
fields inside the integral. The ordering prescription is necessary due to the presence
of potentially divergent terms, e.g. δ3 (0) klkmε

lmn, which for arbitrary value of kn

are zero and for |k| −→ 0 have an undetermined limit. They are a consequence of
the commutation relation (37) among the oscillator operators of θ̂ field. By using the
field expansion relations (33), (34) and (35) inside the relation (47), the quantum
topological charge operator can be decomposed in the following sum

: ω̂(x0) : = 2 (2π)3
(
: ω̂2(x

0) : + 2i : ω̂4(x
0) :
)
, (48)

The operators : ω̂a(x
0) : , a = 2, 4 from the r. h. s. of the above relation represent

the operatorial counterpart of the the second term, kept due to its total derivative
contribution, and the last term from the relation (47), respectively, in that order.
After some calculations, one arrives at the following explicit form of the operators



: ω̂a(x
0) : written in terms of creation and annihilation operators

: ω̂2(x
0) : =

∫
d3kN2

kε
lmn

[
b̂†nk

âk + â†
k
b̂nk + âkb̂nke

−
2iωk

c
x0

+ â†kb̂†
nke

2iωk

c
x0
]
klkm,

(49)

: ω̂4(x
0) : =

∫
d3kN2

kε
lmn

[
b̂†lkb̂nk − b̂†nkb̂lk − b̂lkb̂nke

−
2iωk

c
x0

+ b̂†lkb̂
†
nk
e

2iωk

c
x0
]
km.

(50)

Since the components of the momentum kn commute with any operator, one can see
that : ω̂2 : vanishes due to the presence of the totally antisymmetric tensor. The
same symmetry arguments do not apply to : ω̂4 : which is not zero. However, the
time dependent terms vanish in : ω̂4 : . Indeed, by using the commutation relations
(37) in the terms εlmnb̂lkb̂nkkm and εlmnb̂†lkb̂

†
nk
km, one obtains vanishing operator

coefficients for each component kn. Therefore, the topological charge operator of the
quantum relativistic fluid from the class of models discussed here has the form

: ω̂ : = 2iλ~c

∫
d3k

ωk

εlmnkm

(
b̂†lkb̂nk − b̂†nkb̂lk

)
, (51)

where the dependence on x0 has been dropped from : ω̂ : . Remark that the quantum
topological number operator is parametrized by the parameter λ linearly and that
it is expressed in ~c units. Its dependence on the Kähler and complex potentials is
hidden in the integrand and has a simple form due to the quantization of A field.
The fields θ̂ and π̂θ do not contribute to the topological charge operator that is time
independent.

In order to see how : ω̂ : acts on the Fock space, we consider a general state of

fixed momentum vector k′ =
(
k

′

1, k
′

2, k
′

3

)
of the form

∣∣∣Ψ
(
k

′

1, k
′

2, k
′

3

)〉
=
∣∣∣n1

(
k

′

1

)
, n2

(
k

′

2

)
, n3

(
k

′

3

)〉
=

3⊗

q=1

∣∣∣nq

(
k

′

q

)〉
. (52)

Here, nq

(
k

′

q

)
denotes the number nq of excitations of bq type which have the value

of momentum k
′

q in the q = 1, 2, 3 direction. The last equality in (52) shows that the
state factorizes as a tensor product of number operator eigenstates in the correspond-
ing directions 3. Also, we consider that the number of excitations in each direction is
fixed in the state (52) and that the number operator eigenstates are ortogonal and
normalized to unity

〈
nl (kl) |ms

(
k

′

s

)〉
= δl,sδnl,ms

δ
(
kl − k

′

s

)
. (53)

It is easy to see that the expectation value of : ω̂ : is zero in the states of the form
(52) because of the fixed number of excitations in each direction one starts with. The
vacuum state is of the form (52) and thus one concludes that the vacuum has zero
linking number as expected.

3The dependence of the state given in the relation (52) on the excitations of the scalar potential θ̂ does

not affect the calculation of the topological charge since θ̂ does not contribute to the topological number
operator.



Since the fixed number of excitations in the state (52) together with the ortogonal-
ity relation (53) make the topological charge number vanish, one could take instead
the more general linear combination of states that have the following form

|Ψ〉 =

∫
d3k′

(2π)3

3∑

n1,n2,n3=1

Cn1,n2,n3

(
k

′

1, k
′

2, k
′

3

) ∣∣∣n1

(
k

′

1

)
, n2

(
k

′

2

)
, n3

(
k

′

3

)〉
, (54)

where the arbitrary complex coefficient functions Cn1,n2,n3

(
k

′

1, k
′

2, k
′

3

)
can be normal-

ized to make the integral covariant if necessary. The states from the above relations
are entangled states of tensored number operators eigenstates. One can show that
the expectation value 〈 : ω̂ : 〉 in the states of the form (54) is given by the following
relation

〈 : ω̂ : 〉 = 4iλ~c

∫
d3k

ωk

3∑

n1,n2,n3=1

Cn1,n2,n3
(k1, k2, k3)

×
{
k1

[√
n2 (n3 + 1)Cn1,n2−1,n3+1

(k1, k2, k3) −
√
n3 (n2 + 1)Cn1,n2+1,n3−1

(k1, k2, k3)
]

+ k2

[√
n1 (n3 + 1)Cn1+1,n2,n3−1

(k1, k2, k3) −
√
n1 (n3 + 1)Cn1−1,n2,n3+1

(k1, k2, k3)
]

+ k3

[√
n1 (n2 + 1)Cn1−1,n2+1,n3

(k1, k2, k3) −
√
n2 (n1 + 1)Cn1+1,n2−1,n3

(k1, k2, k3)
]}
,

(55)

Some comments are in order now. Firstly, note that the quantum topological
number given in the relation (55) is different from zero if the integral does not
vanish. This condition should be satisfied by a large set of arbitrary coefficients

Cn1,n2,n3

(
k

′

1, k
′

2, k
′

3

)
which thus define the states with non-vanishing quantum topo-

logical linking number. Secondly, one can see from the classical state equations of the
model (13) and the relation (55), that there is a large number of quantum states in
which the quantum linking number is infinite due to the infinite value of the classi-
cal limit of the pressure density or the energy density, i. e. for p → ∞ or ε → ∞,
respectively. On the other hand, for p→ 0 or ε→ 0, the topological number is zero,
unless the integral and sum in the r. h. s. of (55) diverge in the corresponding state.
Thirdly, note that in general either the quantum linking number is zero or it is time
independent as expected. This result expresses the conservation of the expectation
values of the linking number operator.

5 Conclussions

In this paper, we have investigated the quantization of the relativistic fluid on Kähler
manifolds. The class of models considered here are parametrized by an arbitrary
Kähler potential depending on two complex fluid potentials z and z and a real pa-
rameter λ. That type of models represents a subset of a larger set parametrized by
{K(z, z), f(ρ)} that was firstly proposed in [14]. Due to the arbitrary dependence

of the lagrangian on ρ =
√
π2

θ − j2, the full set of relativistic fluid models is not

suitable for quantization. As was shown in [14], the degrees of freedom of the full set
{K(z, z), f(ρ)} are constrained by second class constraints. As a first result, we have



obtained the physical degrees of freedom of the fluid described by {K(z, z), f(ρ)} by
applying the symplectic projector method. We have concluded that the classical the-
ory on the physical surface displays the same topological charges as the original theory
[14] since the symplectic projector does not include the conserved axial currents. Our
results for the full set of classical relativistic fluids agree with the ones presented in
the literature which revalidates the applicability of the symplectic projector method
to second class constraints.

The main result of this paper is the quantization of the smaller set of models
{K(z, z), λ}. We have obtained the quantum theory by applying the canonical quan-
tization methods to the pair of fields (θ, πθ) as well as to the vector field A(K, z, z)
which encodes the information about the Kähler and the complex fluid potentials,
respectively, and we have constructed the Fock space of the relativistic fluid and
the one-particle excitations of the relativistic potentials. Also, we have discussed the
semiclassical quantization of the relativistic fluid in which the potential A(K, z, z) is
a classical field. By analysing the one-particle spectrum, it has been shown that the
vacuum of the semiclassical theory is infinitely degenerate. From that, one concludes
that Â should be treated as a quantum field.

The second important result of the present paper is the construction of the quan-
tum linking number operator ω̂ which was defined by taking the normal ordered field
products in the r. h. s. of the relation (47). The operator ω̂ is time independent and
it is determined only by the Kähler and the complex potentials, with no contribution
from the real potential. We have shown that the vacuum of the quantum relativistic
fluid has vanishing linking number, as well as the states formed by taking the tensor
product of number operators eigenstates of Â field. However, there are entangled
number operator eigenstates with non-vanishing linking number.

As a final comment, we note that the classical topological number can be expressed
as a surface term as in the relation (4). It would be certainly interesting to compare
the approach presented in this paper with a different quantization method and to
attempt a proper treatment of the boundaries in the quantum theory. That analysis
and the application of the present method to the supersymmetric fluid [6] in the
Kähler parametrization will hopefully be discussed elsewhere.
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